Genetic modifications during development of paediatric groups 3 and 4 medulloblastoma are responsible for their highly metastatic properties and poor patient survival rates. PRUNE1 is highly expressed in metastatic medulloblastoma group 3, which is characterized by TGF-β signalling activation, c-MYC amplification, and OTX2 expression. We describe the process of activation of the PRUNE1 signalling pathway that includes its binding to NME1, TGF-β activation, OTX2 upregulation, SNAIL (SNAI1) upregulation, and PTEN inhibition. The newly identified small molecule pyrimido-pyrimidine derivative AA7.1 enhances PRUNE1 degradation, inhibits this activation network, and augments PTEN expression. Both AA7.1 and a competitive permeable peptide that impairs PRUNE1/NME1 complex formation, impair tumour growth and metastatic dissemination in orthotopic xenograft models with a metastatic medulloblastoma group 3 cell line (D425-Med cells). Using whole exome sequencing technology in metastatic medulloblastoma primary tumour cells, we also define 23 common 'non-synonymous homozygous' deleterious gene variants as part of the protein molecular network of relevance for metastatic processes. This PRUNE1/TGF-β/OTX2/PTEN axis, together with the medulloblastoma-driver mutations, is of relevance for future rational and targeted therapies for metastatic medulloblastoma group 3.
Metastatic group 3 medulloblastoma is driven by PRUNE1 targeting NME1-TGF-β-OTX2-SNAIL via PTEN inhibition / Ferrucci, Veronica; de Antonellis, Pasqualino; Pennino, Francesco Paolo; Asadzadeh, Fatemeh; Virgilio, Antonella; Montanaro, Donatella; Galeone, Aldo; Boffa, Iolanda; Pisano, Ida; Scognamiglio, Iolanda; Navas, Luigi; Diana, Donatella; Pedone, Emilia; Gargiulo, Sara; Gramanzini, Matteo; Brunetti, Arturo; Danielson, Laura; Carotenuto, Marianeve; Liguori, Lucia; Verrico, Antonio; Quaglietta, Lucia; Errico, Maria Elena; Del Monaco, Valentina; D'Argenio, Valeria; Tirone, Felice; Mastronuzzi, Angela; Donofrio, Vittoria; Giangaspero, Felice; Picard, Daniel; Remke, Marc; Garzia, Livia; Daniels, Craig; Delattre, Olivier; Swartling, Fredrik J; Weiss, William A; Salvatore, Francesco; Fattorusso, Roberto; Chesler, Louis; Taylor, Michael D; Cinalli, Giuseppe; Zollo, Massimo. - In: BRAIN. - ISSN 0006-8950. - 141:5(2018), pp. 1300-1319. [10.1093/brain/awy039]
Metastatic group 3 medulloblastoma is driven by PRUNE1 targeting NME1-TGF-β-OTX2-SNAIL via PTEN inhibition
Boffa, Iolanda;Del Monaco, Valentina;Mastronuzzi, Angela;Giangaspero, Felice;Salvatore, Francesco;
2018
Abstract
Genetic modifications during development of paediatric groups 3 and 4 medulloblastoma are responsible for their highly metastatic properties and poor patient survival rates. PRUNE1 is highly expressed in metastatic medulloblastoma group 3, which is characterized by TGF-β signalling activation, c-MYC amplification, and OTX2 expression. We describe the process of activation of the PRUNE1 signalling pathway that includes its binding to NME1, TGF-β activation, OTX2 upregulation, SNAIL (SNAI1) upregulation, and PTEN inhibition. The newly identified small molecule pyrimido-pyrimidine derivative AA7.1 enhances PRUNE1 degradation, inhibits this activation network, and augments PTEN expression. Both AA7.1 and a competitive permeable peptide that impairs PRUNE1/NME1 complex formation, impair tumour growth and metastatic dissemination in orthotopic xenograft models with a metastatic medulloblastoma group 3 cell line (D425-Med cells). Using whole exome sequencing technology in metastatic medulloblastoma primary tumour cells, we also define 23 common 'non-synonymous homozygous' deleterious gene variants as part of the protein molecular network of relevance for metastatic processes. This PRUNE1/TGF-β/OTX2/PTEN axis, together with the medulloblastoma-driver mutations, is of relevance for future rational and targeted therapies for metastatic medulloblastoma group 3.File | Dimensione | Formato | |
---|---|---|---|
Ferrucci_Metastatic group 3_2018.pdf
accesso aperto
Note: https://academic.oup.com/brain/article/141/5/1300/4911167
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.72 MB
Formato
Adobe PDF
|
2.72 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.